
Project Report : GHOST-HUNTER
Andreas CHARALAMBIDES
Carl ABOU SAADA NUJAIM
Abel HENRY-LAPASSAT

I) Introduction
'Ghost Hunter' emerges as a nearly innovative gaming application, uniquely

designed for both wearable devices and smartphones. This immersive game plunges
players into an unseen environment filled with roaming ghosts, challenging them to
capture these entities within a critical three-minute timeframe.

Fig. 1: photos of a markers (left), sketch of scene disposition (right)]



I) Objective and Gameplay

The game's primary goal is for users to navigate an invisible, obstacle-ridden
environment in pursuit of ghosts. Players must catch all the apparitions before time
runs out, using only their smart device's feedback for navigation. As the players
move, they encounter invisible barriers that impede their path. The device alerts
them to these obstacles through escalating vibrations: a soft pulsation when they are
near, intensifying as they get closer. Players must attempt to 'break' these barriers by
interacting with them; success deactivates the vibration, while failure or bypassing
results in the loss of a life. The game adopts similar mechanics for the play area
boundaries, with the crucial exception that these perimeters are unbreakable,
necessitating player avoidance.

Catching the ghosts involves a synergy of UI prompts, 3D audio cues, and
vibration alerts. When a ghost is within reach, the device notifies the player, who
must then quickly press a designated 'capture' button.

II) Innovative Gaming Experience

Distinct from traditional video games that depend heavily on visual feedback,
'Ghost Hunter' invites players into a novel experience. Here, the game world is
navigated and interpreted through essential sensory feedback relayed via the
player's device. The initial setup involves the player laying markers on the ground,
utilizing their smartphone as an overhead room camera (see Fig. 1). This preparation
transports players into an enthralling world where they must capture ghosts. Players
need to be acutely aware of their virtual surroundings, which include obstacles and
room boundaries. Additionally, players are required to wear a green marker to
ensure accurate tracking throughout the game.

III) Technical Foundation and Development Insights

This project employs the Unity Game Engine primarily but is enhanced with a
variety of technologies, including Computer Vision. In this report, we will delve into
the details of this project, from its conception and rules to its functionality and
technical complexity. We will also discuss the limitations and challenges faced during
development, along with potential future improvements.

II) Project Overview
A. Game Rules

The rules for Ghost-Hunter are simple, yet it’s necessary to detail them
and explain the functioning of the program (which will be elaborated in the
‘Code Explanation’ section of the document).

Players are equipped with a predefined number of lives and they have to
capture a specific quota of ghosts within a limited time frame. Throughout the



game, players will have to rely mostly on their non-visual senses to
acknowledge the virtual environment, notably by listening to sounds emitted
by ghosts when detected by the player, or the vibrations produced by the
wearable device whenever the player gets close to or collides with an
obstacle (Fig. 2).

Fig. 2: Sketches of sound & vibrating cases

The only visual feedback is the interface, which lights up whenever a ghost
passes through the player’s flashlight, and displays only the basic information
(time left, lives left and ghosts caught) (Fig. 3).

Fig. 3: Interface changes on ghost detection

While navigating the game, the player will confront various virtual
obstacles, which will emit a series of vibrations when the user gets close to
them. The closer the user gets, the faster the vibration rate is. These
obstacles can be destroyed by executing a punching gesture (more or less
permissive), except for the structural walls of the room (Fig. 4). Furthermore,
contact with these obstacles will cause the loss of one of the player's lifes
(Fig. 5). When they run out of lives, the player loses the game.



Fig. 4: Punching Wall & Obstacles behavior

Fig. 5: Wall/Obstacle Collision Behavior

B. Global Functioning
In order to make all of this possible without showing anything to the user,

we had to replicate a vibrant virtual world within the Unity application, which
serves as the stage for every element of the gameplay. Inside of it, player
movement and actions are carefully replicated through multiple scripts and
linkings, which make use of all kinds of inputs to produce the corresponding
behaviors in either game evolution, and/or haptic/audio/visual output (Fig. 6).

Moreover this virtual environment is used to simulate various elements and
behaviors, such as the flashlight following the wearable device’s orientation,
the ghosts and their behavior (random movement, fleeing away when
detected, production of sounds, etc), and the player’s actions and their results
(hitting obstacles, detecting ghosts, destroying impediments, etc).



Fig. 6: Real Environment (left) & virtual environment in Unity

To enable player movement, we used computer vision, computed in the
overhead camera through python scripts and external software (IVCam), in
order to track the player’s real-world position and map it to the virtual scene
synchronously. Computer vision also helps us detect markers in order to both
setup the room, compute its dimensions, and track the player’s position
regarding their distance from the top-left makrer (Fig. 7). Such technologies
helped us give this project an innovative approach for player immersion,
blurring boundaries between reality and virtuality.

Fig. 7: Marker Recognition & Player Tracking(left), Player positioning in Scene

C. Setup - (from real to virtual environment)
As previously described, configuring the game necessitates the user to

position the four provided markers in a rectangular shape, forming the
optimum layout for a basic room. Additionally, they must wear a green marker
on their head to enable tracking of their position by the overhead camera.

During this setup phase, user can observe the overhead camera’s view on
a computer screen, allowing for adjustments if necessary. The detected



markers are also displayed on the watch’s interface, turning green when
recognized (Fig. 8). When the four markers are correctly detected, a signal is
sent to the game, which is now ready to start.

Fig. 8: Marker Recognition during placement (left), Visual feedback on Watch UI

Upon successful marker recognition, the virtual room initializes using the
dimensions defined by the markers’ positioning. Obstacles are then randomly
positioned & sized, taking into account the room’s defined size. Then, ghosts
are distributed and start their movement, while the player's representation is
set up in the virtual world.

Once this initialization process concludes, the game is set up and ready to
begin. In the subsequent section, we will delve into the implemented
interactions, enumerate the tools & devices used, and outline project’s
feature.

III) Project Features
A. Interactions

This project encompasses a diverse range of interactions, all easily
performable by the player:

- Moving Around: While in motion in the real environment, the player
can trigger specific events such as detecting a ghost, which results in a
haptic and auditory response, or colliding with an obstacle, causing
vibrations from the wearable device coupled to an auditory signal if the
player is losing a life.

- Rotating Watch/Smartphone : By rotating their wearable device, the
user is rotating the simulation of the flashlight in the virtual scene,
which might trigger a ghost capture, lighting up the interface and
generating a sound effect.

- Clicking : User can click on the interface’s button when it lightens up in
order to effectively capture the detected ghost. The latter will trigger a
sound effect and vibration (different if succeeded capture or not).



- Gesture Input : In order to destroy obstacles, the player needs to
perform a punching gesture, which will possibly destroy the wall,
modifying the virtual environment, and making 2 noises, one for wall
hitting and the other for wall destruction.

B. Devices & Tools
From what has already been discussed, we can already list multiple

devices that have been used in this project. First, there is the player’s
wearable device, a Galaxy Watch5 Pro that has been lent to us by Mehdi &
Anastasia. Second, we have the overhead camera, which, in our case, was a
phone (could be another device, but this was the most effective and
readily-available in this timespan). Third, this project also made use of a
computer to link the watch and the phone, and process the phone’s captured
data (fig10).

The watch is the main (and only) game interface. It is used to manage the
player’s flashlight orientation, listen for gestural inputs, output corresponding
feedback, and display the game interface. To get and use the orientation of
the device, we accessed its gyroscope’s values and used it as a base for the
flashlight’s direction in the scene. Also, the watch is the only device that is
executing the main code, thanks to a Unity application built from the Game
Engine, to make an Android Standalone Software.

The phone is only used as a camera, it is not executing any script. It is
linked to the computer using a software named “IVCam,” to capture the
camera output and send it to the device to perform the necessary
computations.

The laptop receives the phone inputs (using IVCam), and executes
computer vision scripts to analyse the phone’s captured images in real-time
and send the information to the watch’s Unity application.

Fig. 10: Project Devices & Technologies Plan



IV) Coding Explanations -

A. Andreas

One of the challenges we faced in our project was tracking the user's position.
We initially thought we could achieve this by using the user's smartphone device’s
accelerometer, gyroscope, and various mathematical and physical theories.
However, this method proved to be inefficient and unreliable. Given the limited
timeframe, we had to find a more effective approach as the initial one was far too
time-consuming.

After a discussion with Mr. Mehdi Chakhchoukh, we decided to adopt
Computer Vision to track the user’s position. Our refined strategy involved placing a
camera in a fixed position above the designated “playground”, providing a top-down
view. This setup would be instrumental in capturing the entire scene below, which
included both markers and the player, thus allowing for comprehensive tracking and
interaction within the space.

The logic behind the Computer Vision implementation is as follows: To
calculate the user's available playground area, the user must place four physical
markers in each corner of the desired play area. These markers are uniform and
distinct, easily recognizable by the system. Each marker's position is identified using
color detection algorithms, leveraging the HSV color space, which is less sensitive to
lighting changes compared to the traditional RGB space.

Once the markers are placed, the user initiates the system, and the camera
starts capturing real-time video data. The system processes each frame to locate the
markers based on the predetermined color profiles, ignoring irrelevant objects and
potential interferences. Advanced image processing techniques, such as Gaussian
blurring, are employed to reduce image noise and improve the markers' detection
accuracy.

The detection algorithm generates contours around the areas of interest
(markers) and calculates their centers. These centers are pivotal as they help
determine the corners of the user's playground. By categorizing these centers as
'top-left,' 'top-right,' 'bottom-left,' and 'bottom-right,' the system establishes a virtual
playground boundary corresponding to the physical space marked by the user.

The real challenge emerges in calculating the user's position within this
predefined area. The user's coordinates are captured similarly to the markers, but
with additional computations. The system continuously captures the user's position,



calculates the distance from each corner, and normalizes these values to a scale of
0 to 1. This normalization process is crucial, as it makes the system adaptable to
different playground sizes and camera resolutions.

Moreover, to measure real-world distances between markers and maintain
proportionate scaling, the system incorporates a predefined real-world width of the
markers. It calculates a scale factor by comparing the real-world width with the
perceived width in the camera. This method allows for the accurate determination of
distances between various points in the space, essential for maintaining the user's
correct positional context within the virtual environment.

To ensure smooth and real-time communication, the system employs TCP
networking principles. The processed positional data, including predefined boundary
adjustments, are transmitted to the Unity game engine. This transmission allows the
virtual environment to adjust and respond to the user's movements accurately,
enhancing the immersive experience.

Adopting Computer Vision simplified our process, reduced the potential error
margin, and provided a more dynamic and adaptable solution. It allowed for quicker
iterations, making it possible to test and refine our approach effectively within the
project's constrained timeline.

Useful Resources Used:

● Send Data From Python To Unity TCP Socket - YouTube
● Welcome to OpenCV-Python Tutorials’s documentation! — OpenCV-Python

Tutorials beta documentation (opencv24-python-tutorials.readthedocs.io)
● OpenCV: OpenCV modules
● How to Normalize NumPy Arrays (Min-Max Scaling, Z-Score, L2) • datagy
● How to detect specific colors from an image using OpenCV? (projectpro.io)
● Color-Based Object Detection with OpenCV and Python | Don't Repeat

Yourself (dontrepeatyourself.org)

B. Carl

1. TCP Connection

To make use of the TCP connection implemented by Andreas and
process the received data, a delegate was created, which is invoked on
every message received.

//Delegate to be fired when message received
public delegate void Delegate(string message);
public static Delegate onReceiveMessage = _ => { };

https://www.youtube.com/watch?v=Dm0CiAiZk14&list=LL&index=3&t=8s
https://opencv24-python-tutorials.readthedocs.io/en/latest/index.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/index.html
https://docs.opencv.org/3.4/index.html
https://datagy.io/python-numpy-normalize/#:~:text=In%20order%20to%20use%20L2,data%20and%20calculates%20the%20norm
https://www.projectpro.io/recipes/detect-specific-colors-from-image-opencv
https://dontrepeatyourself.org/post/color-based-object-detection-with-opencv-and-python/?utm_content=cmp-true
https://dontrepeatyourself.org/post/color-based-object-detection-with-opencv-and-python/?utm_content=cmp-true


Any script that requires an input from the Computer Vision application
can thus subscribe a method to the delegate, which will be called every
time a new message is received. The corresponding methods can thus
each check if the received message concerns them, and process it if it
does.

However, as the received message is handled by a separate thread
and the delegate updates the UI at times, Andreas created a queue
and, every time a message is received, pushed a function that invokes
the delegate.

// Enqueue the received message to handle in the main thread.
mainThreadActions.Enqueue(() => {

// This action will be executed in the main thread.
onReceiveMessage.Invoke(dataReceived);
// For the purpose of acknowledgment or command, send back a

response
string response = dataReceived; // This can be anything

relevant to your application.
byte[] sendBytes = Encoding.UTF8.GetBytes(response);
nwStream.Write(sendBytes, 0, sendBytes.Length);

});

Then, he invoked these pushed methods in Update(), to execute them
on the main thread.

void Update() {
while (mainThreadActions.TryDequeue(out var action)) {

action.Invoke();
}

}

2. UI

For the user interface of the game, Unity’s legacy UI was used. It was
adapted for a small circular display, and all clickable areas are big
enough to prevent misses on the tiny watch screen. The
implementation of the UI is quite straightforward, and all it does is
receive information from other scripts (or input from the user) and
update the watch display accordingly.

3. Room Generation (Initialization/RoomGenerator.cs)

When the dimensions are received by the watch, the
RoomGenerator.cs script will generate the room and obstacles. It will



start by defining the room dimensions in the Unity scene, and setting
up the four walls (one on each side of the room).

After that, the room area will be divided into sections of roughly 1.5m
by 1.5m, and the size of each section will be computed. Then, inside
each section, a single obstacle will be instantiated with a random size.
That way, obstacles will be somewhat evenly distributed in the room.
Note that, as the scene will not be visible to the user, the obstacles are
represented by cubes.

For more information, check out the script, which is fully commented.

4. Obstacle collision (Player/HitTesting/ObstacleCollision.cs)

There are two different levels of colliding with walls/obstacles: getting
close to one, which triggers a vibration, and colliding with one, which
will take away one of the player’s lives.

To implement the vibration, I used a script from:
https://gist.github.com/ruzrobert/d98220a3b7f71ccc90403e041967c4
6b

I also created my own vibration handler script that utilizes the above
script to provide different methods to generate an appropriate vibration
depending on the context.

When the user gets close to a wall/obstacle, a vibration gets emitted
with a repetition rate that reflects the distance between the user and
the obstacle. I.e., when the user gets closer, the vibration pattern
quickens.

In order to compute the actual distance between two objects (not the
distance between their pivot points), I used the following script:
https://gist.github.com/andrew-raphael-lukasik/658184336c9799ed6
6f3a5acfa3e7f9c

The latter will get the bounding boxes of the two given GameObjects,
and compute the smallest distance between those two.

In order to avoid colliding with obstacles, the user can opt to break
them instead. Whenever they are inside the trigger area of an obstacle,
the user can punch the air (cause the accelerometer values to peak),
the obstacle will be destroyed.

For more information, check out the script, which is fully commented.

https://gist.github.com/ruzrobert/d98220a3b7f71ccc90403e041967c46b
https://gist.github.com/ruzrobert/d98220a3b7f71ccc90403e041967c46b
https://gist.github.com/andrew-raphael-lukasik/658184336c9799ed66f3a5acfa3e7f9c
https://gist.github.com/andrew-raphael-lukasik/658184336c9799ed66f3a5acfa3e7f9c


5. Ghost Detection (Player/HitTesting/GhostDetection.cs)

The player model in the scene is equipped with a flashlight (an invisible
cone with a trigger on it), which is oriented using the gyroscope values
of the device.

When a ghost enters the flashlight trigger area, its state will change to
“Detected,” it will stop moving, and wait a second. If the user presses
down the vacuum button on their device for a few microseconds, the
ghost will be sucked in and captured. Otherwise, if the second passes,
the ghost will flee and move away from the player.

6. Audio

To spatialize the audio output (which can be sensed using appropriate
headphones/earbuds), on top of making all audio sources in the scene
3D, we used Unity’s Native Audio Plugins SDK:
https://github.com/Unity-Technologies/NativeAudioPlugins
More precisely, we used the script SpatializerUserParams.cs from the
SDK.

C. Abel
1. Ghost Movement

In order to make the game more fun and realistic we had to make
the ghosts move, and for that I used a simple ‘State Machine’ program
which I’ve put in the Ghosts.cs script which is attached to the ghost
prefab. Plus this is using the ‘FIxedUpdate’ method from unity because
when it comes to movement and physics handling, it is better than the
‘Update’ method, cause time is linearized in the Fixed one, so there are
less errors due to time evolution.

The state machine logic is quite simple, the ghost is in either
[Move], [Turn] or [Wait] state :

- In [Move] state, the ghost will move forward at a given speed,
and that using a counter, that decreases of 1 for each movement
call. Once this counter has reached 0, then we randomly assign
the state to either [Wait] or [Turn] with a higher probability to be
[Turn]. Then if [Turn] state is chosen, we select a random new
value for the moving counter. And then we set a random value
for the turn angle value.

- When in the [Turn] state, the ghost will perform a rotation
(predefined value) but not at once, I used a counter to try
“smoothing” it a bit, but it’s not working very well. So basically
the ghosts only rotate to the given angle. And right after finishing
its turn, the ghost will go back to [Move] state.

https://github.com/Unity-Technologies/NativeAudioPlugins


- And for [Wait] state, the ghost will simply stops moving and
turning, so will do nothing for a given amount of time (randomly
choosed). Before going back to [Move] state.

The Ghost.cs script also handles the case of a Wall collision, and if
so, the ghost will be assigned an opposite direction from the one he
actually has, and be forced to enter [Turn] state, and to force him to
turn in this direction, we don’t set the turn counter so it’s triggering the
other part of [Turn] state, which is the one telling the ghost to turn in the
given ‘opposite direction’.

This script also handles the case where Ghosts enters in collision
with the player, which triggers the ‘ghost sound’ to be played. Plus it
contains the ghost’s detection function which makes him flee away
when detected but not captured quickly enough.

2. Game Logic & Linking
Even tho the game logic is kinda implemented in every script, as

many scripts are handling their part of the game, the main behaviors
are defined in the GameHandler.cs script, but also it’s linking as much
stuff as possible together using centralized functions (not for everything
because due to bad group communications we couldn’t centralize
everything…).

So the main use of this script is to make sure that every component
is well set, basically it fetches all of the setup value (ghost amount, time
for the game), but also it instantiates the ghosts (creating them, and
placing them at the center of the room before telling them to start
moving and behaving as the Ghost.cs script tells em), and starts the
timer using an IEnumerator function which will be running throughout
the program runs, and triggering the EndGame function which makes
the End UI pop and stops the game at the same time.

In order to properly starts the game, I also created the
GameStarter.cs script, which is just here to store all the setup values
we’ll need for the game to be instantiated correctly (time, player lives,
ghost amount, ghosts to catch amount). Basically I wanted this script to
handle more stuff (like the room instantiation too) but again Carl didn’t
communicate properly on what he had done in his implementation so I
couldn’t use my script to do so as he’d already implement it.

3. Flashlight Rotation
As the watch is used to scan the room for ghosts, we needed to

reproduce the watch’s rotation to apply it to the “flashlight” of the player
inside of the virtual scene. In order to do so I initially attached
PlayerRotation.cs script to the player, but this one has been merged
with the PlayerMovement.cs script.



The main logic of this script lies in the Update function, which is
executed on every frame. In this, the gyroscope datas are used to
update the rotation of the attached game object, applying the raw
gyroscope rotation while smoothing it to ensure a fluid movement for
the flashlight.

In the Start method, I do the initialization, activating the device’s
gyroscope, setting the target frame to 60, and records the initial Y-Axis
angle for reference. Then I create a new “GyroRaw” GameObject to
attach the script and after that I initiates the calibration process using
the CalibrateYAngle Coroutine.

This coroutine serves as said to calibrate the rotation angle on the
Y-Axis. This temporarily increases the smoothing factor for the
calibration, calculates the calibrated angle, and finally restores the
original smoothing factor.

Now that we’ve initialized the setup, we call inside of the Update
method the followings functions on each frame :

- ApplyGyroRota which handles the ‘raw_gyro_rota’ value based
on the gyroscope datas, also performing some adjustments to
ensure that data is correctly oriented.

- ApplyCalib simply applies the previously calibrated Y-Axis angle
to the ‘raw_gyro_rota’ variable.

In summary, this script combines gyroscope datas from the device
gyroscope sensor with some calibrations and smoothing techniques to control the
rotation of the attached GameObject -The Flashlight-.

4. Player & Ghost Prefabs
As we’ve developed this game mainly under Unity, we used a

well-known feature of this Engine, the Prefabs, in order to declare
customed GameObjects that we would use later on, allowing us to
declare their behaviors, components as wanted. All prefabs are
available in the Assets/Resources/Prefabs folder

The ones I created are the Ghost & Player prefabs :
- GHOST - Body is represented by a Sphere, on which I attached

a collider & a rigidbody, which are both Unity components
designed to allow physical interaction (mainly collisions with
other game objects) involving the given GameObject. And
obviously the Ghost.cs script to make this GameObejct behave
as explained earlier, as a ghost. Plus there is an AudioSource
that is triggered from the script, with the “GhostWoosh” sound
attached to it.

- PLAYER - Body is here represented by a tall cube, on which are
also attached a RigidBody and a Collider (for the same reasons
as the ghost prefab ones). Also the “RotationFlashlight”object is
attached to it, in order to make it follows the user’s position and



rotations. Moreover, all script that describes and rules the
player’s behavior are linked to the parent GameObject in order
to be sure they are applied to every child object of it (both body
and flashlight), and in these we have PlayerMovement,
ObstacleCollision, GhostDetection scripts.

5. Additional personal works
Throughout the project, we’ve wanted to use stuff that we’ve

realized zqs either not relevant, not working, or even not performable.
Here are the ones I tried :

- GPS tracking for movement ->
public class GPS : MonoBehaviour {

public static GPS Instance { get; set; }

public float latitude;

public float longitude;

private void Start(){

Instance = this;

DontDestroyOnLoad(gameObject);

StartCoroutine(StartLocationService());

}

private IEnumerator StartLocationService(){

if(!Input.location.isEnabledByUser){

Debug.Log("User hasn't enabled GPS");

yield break;

}

Input.location.Start();

int wait = 20;

while(Input.location.status ==

LocationServiceStatus.Initializing && wait > 0){

yield return new WaitForSeconds(1);

wait--;

}

if(wait <= 0){

Debug.Log("Timed out");

yield break;

}

if(Input.location.status ==

LocationServiceStatus.Failed){



Debug.Log("Unable to determine device location");

yield break;

}

latitude = Input.location.lastData.latitude;

longitude = Input.location.lastData.longitude;

}

private IEnumerator UpdateLocationCoroutine(){

if(!Input.location.isEnabledByUser){

Debug.Log("User hasn't enabled GPS");

yield break;

}

Input.location.Start();

int wait = 20;

while(Input.location.status ==

LocationServiceStatus.Initializing && wait > 0){

yield return new WaitForSeconds(1);

wait--;

}

if(wait <= 0){

Debug.Log("Timed out");

yield break;

}

if(Input.location.status ==

LocationServiceStatus.Failed){

Debug.Log("Unable to determine device location");

yield break;

}

latitude = Input.location.lastData.latitude;

longitude = Input.location.lastData.longitude;

}

public void UpdateLocation(){

StartCoroutine(UpdateLocationCoroutine());

}

}

(I won’t explain this code because it is not inside the final
project, but it was meant to catch the device’s GPS values and



translate it to the scene, but I figured out by trying it that is
wasn’t precise enough…)

- Photon Networking ->
I don’t have all the codes for this because it was more of a project

organization than a single script (RPC functions all over the existing
scripts, use of PhotonViews attributes …)

public class NetworkHandler : MonoBehaviourPunCallbacks {

//photon room

private RoomOptions room_opt;

private byte max_in_room = 3; //watch app, phone-cam app, +1 to avoid errors

private int current_in;

//Custom prefabs

public GameObject ui_prefab;

public GameObject cam_prefab;

//some variables

private int player_cnt = 2; //watch + phone

private bool cam_connected = false;

private PhotonView pv;

//Unity Methods

public void Start(){

#if UNITY_STANDALONE_OSX

Screen.fullScreen = false;

Screen.SetResolution(800, 600, false);

#endif

pv = GetComponent<PhotonView>();

Connect();

}

//Callbacks

public override void OnConnectedToMaster(){

base.OnConnectedToMaster();

current_in = 0;

room_opt = new RoomOptions{

MaxPlayers=max_in_room,

IsVisible=true,

IsOpen=true

};

PhotonNetwork.JoinOrCreateRoom("Room", room_opt, TypedLobby.Default);

}



public override void OnJoinedRoom(){

base.OnJoinedRoom();

if(PhotonNetwork.IsMasterClient){

Debug.Log("OnJoinedRoom -> being MASTER, from :

"+PhotonNetwork.LocalPlayer.ActorNumber);

PhotonNetwork.SetMasterClient(PhotonNetwork.LocalPlayer); //not rly

necessary but a good security

Debug.Log("Waiting for PARTICIPANT to join");

} else {

Debug.Log("OnJoinedRoom -> being PARTICIPANT, from :

"+PhotonNetwork.LocalPlayer.ActorNumber);

}

}

public override void OnPlayerEnteredRoom(Photon.Realtime.Player newPlayer){

base.OnPlayerEnteredRoom(newPlayer);

if(PhotonNetwork.IsMasterClient){

if(PhotonNetwork.CurrentRoom.PlayerCount==player_cnt){

pv.RPC("LaunchBothRPC", RpcTarget.AllBuffered);

}

}

}

public void Connect(){

Debug.LogError("Connecting to server ...");

PhotonNetwork.NickName = System.DateTime.Now.Ticks.ToString();

PhotonNetwork.ConnectUsingSettings();

}

[PunRPC]

public void LaunchBothRPC(){

Debug.Log("Entering LaunchBoth RPC method");

if(PhotonNetwork.IsMasterClient){

//here we wanna launch the watch's part (ui then starting game)

Debug.Log("launching for master -> Watch");

ui_prefab = Instantiate(ui_prefab, transform.position,

transform.rotation);

} else {

//and then we wanna start the camera's functionning (setup &

communication)

Debug.LogError("Launching for part -> Camera");

/*Here we wanna set the SETUP RECOGNITION*/



cam_prefab = Instantiate(cam_prefab, transform.position,

transform.rotation);

Debug.LogError("NetworkHandler -> Starting the communication");

cam_prefab.GetComponent<RoomCamera>().GetMarkers();

}

}

}

So this scripts uses Photon Unity network library to handle connections
between the game, the camera, the setup, and to synchronize all the
instantiations & stuff.

Would definitely be irrelevant to comment as we are not using neither
this script nor this logic, but I wanted to point out that even tho it seems like I
did less than my colleagues, I worked on lot of stuff beside what is currently
implemented, and I couldn’t finalize lots of ideas because of the poor group
communication we had, but even tho I am proud of what I did, and I wanted to
show what I developed for this project anyway.

V) Project Discussions
A. Encountered Issues -

a. User’s Tracking Techniques
Throughout this project’s conception and development, we’ve come across
multiple problems, and we’ve also realized that our project was encountering
some limitations in its actual state.

The first problem we’ve encountered was about the player’s movement.
Indeed, the initial idea we had to track the player's movement was to use the
accelerometer and gyroscope built in the watch, but it turned out to be
infeasible as these tools are not precise enough to generate an
at-least-somewhat accurate tracking of the player. Matter of fact, we couldn’t
even find any source of help on the internet. Here are the different techniques
that we tried throughout the game’s development:

- GPS, to track the user’s position (Fig 11). The latter wasn’t possible
because the accuracy of the GPS wasn’t high enough for the scale we
planned to use. Also, adapting our project to this much bigger scale
meant too much efforts for the user. In addition, we would have needed
an empty room of at least 20 squared meters, which was infeasible.

- Smartphone (or wearable device)’s accelerometer coupled to its
gyroscope to detect the relative change in position of the user, as well
as their orientation in the real world (Fig 12). However, as we tried
several times with various techniques, we realized that it wasn’t



possible in this short timespan to implement something good enough
and precise to be trustfully used in our game. Nevertheless, the code
for detecting the player’s orientation was still used in our project.

- The last technique that we tried (and this time succeeded with) was to
completely change the tracking idea, and use Computer vision instead
to track them from above, thanks to an overhead camera. The player,
wearing a green marker, will be recognized by the overhead camera,
and the marker’s position will be mapped from the image to the unity
scene.

Fig. 11: GPS Tracking Illustration Fig. 12: Sensor Tracking Illustration

b. Project Limitations
Even though our project is running and everything we’ve

implemented is working, it still suffers from some technical limitations.
First, and surely the most important one, the size of the playable area
(approximately 2mx3m), turned out to be too small. Ideally, we would
need an area twice as big for an optimal experience, because, in it’s
actual state, every game element is a bit too close to others, which
lead in too many sounds and events at the same time (ghostsdetected
+ obstacles triggering vibrations + trying to move), and it can be
overwhelming for the user. While the gaming experience isn’t the best,
all of our implemented features worked as expected.

Another problem would be the setup,which is too complicated. As
explained earlier, our setup involves a camera connected to a
computer, both linked to the watch, which is executing the main
program. Ideally, we would only have two devices, the watch and the
overhead camera, but computer vision requires some processing
power to be realtime, and the phone’s is not enough.

B. Possible Improvements
Obviously, the first improvement we would make involves addressing the

limitations, potentially through the use of more sophisticated technologies and
devices. We also considered implementing computer vision within Unity, as



this would allow us to rely solely on an overhead camera and a wearable
device, eliminating the need for any additional software or devices. However,
we were unsure of how to proceed and could not dedicate more time to
acquiring these complex skills.

Another enhancement we could develop is the behavior of the ghost. We
could employ Machine Learning to teach them to act more naturally or utilize
tools such as Unity’s NPC Path Finding. However, the latter option might not
result in sufficiently random behavior for our ghosts.

Additionally, we could diversify the game features, particularly the variety
of obstacles. Currently, obstacles are merely walls of different sizes, placed
around the virtual room. Imaginably, we could introduce items like tables and
false ceilings, requiring the player to adapt more to the virtual environment
and enhancing their immersion.

This innovation leads to another requirement: the ability to track the player’s
height during the game. This would necessitate refining our computer vision
script or exploring other methods, such as using trackers within watches if
feasible (perhaps through y-axis accelerometers).


